EASL Clinical Practice Guidelines

Introduction

Liver fibrosis is part of the structural and functional alterations in most chronic liver diseases. It is one of the main prognostic factors as the amount of fibrosis is correlated with the risk of developing cirrhosis and liver-related complications in viral and non-viral chronic liver diseases [[1], [2]]. Liver biopsy has traditionally been considered the reference method for evaluation of tissue damage such as hepatic fibrosis in patients with chronic liver disease. Pathologists have proposed robust scoring system for staging liver fibrosis such as the semi-quantitative METAVIR score [[3], [4]]. In addition computer-aided morphometric measurement of collagen proportional area, a partly automated technique, provides an accurate and linear evaluation of the amount of fibrosis [5]. Liver biopsy gives a snapshot and not an insight into the dynamic changes during the process of fibrogenesis (progression, static or regression). However, immunohistochemical evaluation of cellular markers such as smooth muscle actin expression for hepatic stellate cell activation, cytokeratin 7 for labeling ductular proliferation or CD34 for visualization of sinusoidal endothelial capillarization or the use of two-photon and second harmonic generation fluorescence microscopy techniques for spatial assessment of fibrillar collagen, can provide additional “functional" information [[6], [7]]. All these approaches are valid provided that the biopsy is of sufficient size to represent the whole liver [[4], [8]]. Indeed, liver biopsy provides only a very small part of the whole organ and there is a risk that this part might not be representative for the amount of hepatic fibrosis in the whole liver due to heterogeneity in its distribution [9]. Extensive literature has shown that increasing the length of liver biopsy decreases the risk of sampling error. Except for cirrhosis, for which micro-fragments may be sufficient, a 25 mm long biopsy is considered an optimal specimen for accurate evaluation, though 15 mm is considered sufficient in most studies [10]. Not only the length but also the caliber of the biopsy needle is important in order to obtain a piece of liver of adequate size for histological evaluation, with a 16 gauge needle being considered as the most appropriate [11] to use for percutaneous liver biopsy. Interobserver variation is another potential limitation of liver biopsy which is related to the discordance between pathologists in biopsy interpretation, although it seems to be less pronounced when biopsy assessment is done by specialized liver pathologists [12]. Beside technical problems, liver biopsy remains a costly and invasive procedure that requires physicians and pathologists to be sufficiently trained in order to obtain adequate and representative results – this again limits the use of liver biopsy for mass screening. Last but not least, liver biopsy is an invasive procedure, carrying a risk of rare but potentially life-threatening complications [[13], [14]]. These limitations have led to the development of non-invasive methods for assessment of liver fibrosis. Although some of these methods are now commonly used in patients for first line assessment, biopsy remains within the armamentarium of hepatologists when assessing the etiology of complex diseases or when there are discordances between clinical symptoms and the extent of fibrosis assessed by non-invasive approaches.